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IMPROPER SOLUTIONS UNDER EXISTENCE ASSUMPTIONS: AN EXAMPLE- 

by ** 
J. H. Eaton 

ABSTRACT 

A pursuit problem is considered in which a pursuer X and target Y a r e  
n points in a n  n-dimensional Euclidean space E . The pursuer is assumed to  

have knowledge of the control (and hence trajectory) to be used by the target 

and is to choose a control to minimize the time required to  intercept the tar- 

get. The target, wishing 

to delay interception as  long a s  possible desires  to choose a control which 

maximizes the pursuit time. It is shown that i f  the target assumes the exis- 

tence of a n  optimal control ( L e . ,  a control for which the least  upper bound 

of the pursuit time i s  attained) he can be lead to a choice of control which 

will result  in an  interception in less time than i f  he applied no control a t  all. 

We will call this minimum time the pursuit time. 

fl- 
FORMULA TION 

1 We will consider the pursuit problem considered by D. L. Kelendzheridze 

in the form presented by Pontryagin e t  al, in reference 2. The notation and 

formulation used by Pontryagin et  a1 is followed as  closely as  possible. In 

this problem the pursuer X and target Y a r e  points in a n  n-dimensional space 

En. Let us denote the control parameter, control region, and trajectory of 

the pursuer  by u, U, and x(t) respectively. Similar quantities for the target 

point will be denoted by v, V, and y(t) .  

responding to initial conditions x(0 )  = x 

controls u(t) and v(t). 

counter time. If,  for a particular x 

u(t) will be called a pursuing control and the smallest  t > 0 for which an  en- 

counter occurs will be called the pursuit.time. 

and y 

control (u(t) by TUv. 
least  one pursuing control u(t) for each admissible target control v(t). 

Let x(t) and y(t) be trajectories cor- 

y(0) = yo and to a pair of admissible 

Any time t. for which x(t.) = y(t.) will be called an en- 

v(t), and u(t) an  encounter occurs, 

0’ 

1 1 1 

0, yo* 

0 
Fixing the initial positions x 

let  us denote the pursuit time corresponding to v(t) and a pursuing 
From this point on we will assume that there exists at 

This 

0 

* This research w a s  supported by NASA under Grant No. NsG 354 

Department of Electrical Engineering, University of California, Berkeley, Calif. 
J- JI TrF 



- 2 -  

restriction i s  necessary for  if  there is a target control v(t) for which there i s  

no pursuing control the problem reduces to a somewhat different one of finding 

such a target control. We will also assume (Assumption I )  that for any given 

admissible target control v(t) there exists an admissible pursuing control u(t)  

such that the corresponding pursuit time T 

we denote by T 

fied for example if the target trajectories corresponding to admissible target 

controls a r e  differentiable with respect to t and i f  the set  of points on En 

reachable by the pursuer from x 

and convex and i f  i t s  boundary moves continuously with t. 

Pontryagin e t  a1 assume (Assumption 11) there exists an admissible target 

control v(t) which brings about the least  upper bound of the values T and 

they d e i ~ ~ t e  this lezst rrpper hminrl by T, 

takes on its minimal value, which uv 
This assumption i s  not particularly restrictive and i s  satis- 

V' 

. 
in a length of time not exceeding t i s  closed 

0 

At this point 

V' 

Thus Assumption II: 

T = max T = max (min T ) 
V U , V  V V U 

Assumption I1 will prove to be very restrictive. 

tions I and 11 the problem becomes one of finding a pair of admissible controls 

u(t) and v(t) such that Tuv = T. 

pair  of controls, and the corresponding pair of trajectories x(t) and y(t) is 

called an  optimal pair of trajectories. 

follows. 

with a knowledge of v(t), will choose an  admissible control u(t) to intercept 

the target in the minimum time Tv. 

ception a s  long a s  possible, would like to find an admissible control v(t) 

which results in the pursuit time Tv achieving i ts  least  upper bound T. 

w i l l  show later  that disasterous results can be obtained if the target assumes 

that such a control exists. 

Proceeding under Assump- 

Such a pair of controls i s  called an optimal 

In words, the problem is  roughly a s  

The target knows that for each control v(t)  he chooses, the pursuer, 

Thus the target, wishing to  avoid inter- 

We 

Proceeding with the formulation a s  given by Pontryagin e t  a1 let the 
n 

motion of the pursuer in the n-dimensional space E 

linear differential equation 

be described by the 

dx/dt = f(x,u) = Ax t BU t c (1) 

where A is an nxn matrix of constants, u, the control vector, belongs to the 

r-dimensional control region U which i s  a closed convex bounded polyhedron 
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in Er, and c ,  an  n-vector, i s  a known function of time. 

of the target point is assumed to be described by the vector equation 

Similarly, the motion 

dy/dt = g(yJvJ t) (2 )  

where y is a n  n-vector, g is a vector function which, in each of its compo- 

nets , is continuous in y, v, and t and continuously differentiable with respect 

to the coordinates yl, y2,. . . ,yn of y. 

set in the s-dimensional space of the variable v = (v , v  , . . . , v  ). The class  

of admissible controls for u and v is taken to be the set  of piecewise continuous 

controls in U and V respectively. To solve the given problem, Pontryagin et a1 

introduce two auxiliary vectors 4 = (4 l,. . . , IC ln )  and x = (XI,.. . ,%) as y e l l  as 
the two Hamiltonian functions 

The control region V is taken to be a 
1 2  S 

H-(t!~,x,u! = 7 4 u, = < 48 f ( x J u ) >  1 L a 
a =1 

n 
11 

Using H and H .two systems of equations for the auxiliary unknowns and 

x. a r e  written 
1 2 

1 

When u(t), x(t), v(t), and y(t) a r e  given and substituted into the right hand 

sides of ( 3 )  and (4) the resulting system of equations ( 3 )  and (4) a r e  linear 

in \c1 and x. 
solution corresponding to u(t), x(t), v(t), and y(t). 

reference 2,  gives a necessary condition of optimality for the problem under 

consideration, i. e. , with Assumptions I and 11. 

Any solution +(t), X ( t )  of these linear equations is said to be a 
.l. 

Theorem 21TJ proven in 

Theorem 21 

y(t) be the corresponding optimal pair of trajectories (see Eqs. (1) and ( 2 ) ) ,  
and let  T be the pursuit time. 

Let u(t) and v(t) be an optimal pair of controls, let x(t) and 

Then, there exist nontrivial solutions M t )  

d 
This theorem is due to D. L. Kelendzheridze. 
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and x(t) of systems ( 3 )  and (4) which correspond to u(t), x(t), and y(t) such that: 

0 1 the maximum conditions 

hold for all t, 0 < t 5 T: - 
2O at the time t = T, the conditions 

hold. 

ANALYSIS 

We now apply Theorem 21 to a specific example. Let the motion of the 

pursuer be described by the equation 

= A x t u ,  - x(0 )  = 0 ( 9 )  
dx 
dt 
- 

where x is  an  n-vector, the control vector u i s  an n-vector and A = -A'  

is a n  nxn matr ix  of constants. Here, a prime denotes transpose. The con- 
2 1 2  = ( U  ) t rol  region U is the circular region 1 1 ~ 1 1  + (u2)' - < 4. Note that U 

is not a polyhedron as  was assumed in the derivation of Theorem 21, however, 

the crucial  property of U that was used in Theorem 21 was that the set  7 of 

states reachable by the pursuer from xo in a time not exceeding t 
'to 

using an  
0 

admissible control (i. e. , a piecewise continuous control u(t) for which u(t) E U 
0 < t < - to) was closed and convex. This property holds for the 

control region U. 
- 

Let the motion of the target by dexcribed by the equation 

= B(y-a) + v Y(0) = a (10) 

where B = -B'  is an  nxn matr ix  of constants y is  a n  n-vector a ,  an n-vector 

is constant and the control region V for the control vector v is  the circular 

region IlvlI 5 1. 

norm-invariant systems considered by Athans, Falb and Lacoss3 and is 

Each of the systems (9)  and (10) is a special case of the 
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chosen so that an analytic solution to the problem under consideration may be 

obtained. We wil l  consider the problem described above for two values of the 

vector a. In one case,  an optimal control pair exists, in the other an optimal 

control pair does not exist. For  the problem under consideration we find 

n 

and 

Whence, Eqs. ( 3 )  and (4) become, in vector form 

from which we obtain 

,Let us now assume that an optimal control pair exists and apply Theorem 21. 

Then, i f  the pursuit time i s  T we find, combining (8) and (12)that a necessary 

condition for a control pair to be optimal i s  

$( T) 
- A'(t- T) +(t) = e 

and 

A'T B'T 
Here we have used the fact that +(O) = e +( T) and x( 0) = e x( T). 
For  convenience, let us choose +(T) to be a unit vector. 

( 5 )  and (6)  we obtain the necessary conditions 

Using (13) in 
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which- imply 

and 
+( T) 

-A'(t- T) u(t) = 2e 

+( T) 
v(t) = e -B'(t- T) 

Using'the controls given in (15) in systems (9 )  and (10) we obtain 

44 T) 
A(t- T) x(t) = 2te 

y(t) = a t te +( T) 
B(t- T) 

and hence 

x(T) = 2T $(T) 

Recalling that a t  the time of interception x( T) = y( T) we find from (17) 

2T\CI(T) = a t T+(T), 

a condition which, since 114 (T)/I= 1, can be satisfied if  and only i f  

+(TI  = a/l/a// = a 
and (18) 

T = 1 b I l  
Note that (7)  i s  satisfied for this choice of T and $( T). Since the controls 

determined by (18) a r e  the only controls which satisfy the necessary con- 

ditions of Theorem 21, they must be optimal if an optimal control pair 

exists. Thus, i f  an optimal control pair exists it i s  given by 
- 

(19) -A'(t -/pu 1 a 
-B'(t - l/a/l 1 a 

u(t) = 2e 

v(t) = e 

The corresponding pair of "optimal" trajectories i s  

x(t) = 2te N t  -1rqj ) 2 

y(t) = a + te B(t -11.11) a 
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In Oraer to simplify what follows let us res t r ic t  ourselves to a two-dimensional 

system and set 

A = B =CT -1) 
Recall we have previously chosen U to be the circular set  determined by 

/ / u l t s  4 and V to be the circular region //VI/ 5 1. 

Consider first case I, in which a = col ( 1 , O ) .  Then since 
/cos lr t  -sin rt \ 

o r  in polar form, r ex, the trajectory of the pursuer is given by 
X I  

rx(t) = 2tD ex(t) = ~ ( l  t t). (21) 

For the target let  us set z(t) = y(t) - a, then z(t) is described in polar form 

by 
rz(t) = t ,  ez(t) = r(1 t t )  (22) 

The trajectories x(t) and y(t) a r e  shown in Figure I, a s  well a s  x(ti), y(ti) 

e for various values o f t .  < 2. and the sets of reachable points zti and Sti,a 

W e  now seek to determine i f  these trajectories a r e  optimal. To answer this 

question let us  consider the set  ct of points in En reachable from the lorigin 

by the pursuer in a time not exceeding t D  and the set St of points in En 

reachable f rom a by the ta rge t  in a time not exceeding t. 

It is easily verified that & is the set of points whose Euclidean distance 

from the origin is equal to o r  less  than ZtD and that S 

1- 

is the set  of pmnts t, a 
who& distance from a does not exceed t. Thus 
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We observe that for a = col (1,0), S 

i s  no target control which will yield a pursuit time greater than 1. 

now check to see that the pursuit time T = 1 is  actually attained with the 

choice of control v(t). 

to zi for any t. l ess  than 1. It is c lear  f rom Figure I (and it can be verified 

analytically) that t = 1 is the smallest value of t for which y( t )  belongs to 

Consequently the pursuer cannot intercept the target on the trajectory y(t) in a 

time l e s s  than 1 and the control pair obtained using Theorem 21 i s  in fact 

c & (see Figure I), and hence there 
1, a 

We must 

Thus we must check to see that y(t.),  does not belong 
1 

1 

Et 

optimal. 

a s  in Case I. 
Let us next consider Case 11 in which a = col (2,O) instead of col (1, 0)  

Eqs. (18) and (20) now yield T = 2 for the pursuit time and 

1 2 K ( t )  = 2tcos n(t-2), x (t) = 2t sin ~ ( t - 2 )  

y 1 ( t j  = 2 + ices wit - - ) ,  )T 2,&\ IL, = t 

for the "optimaltt pair of trajectories. 

form 

rx(t) = 2t, e (t)  
X 

r J t )  = t, ez(t)  

where z(t)  = y(t) -a. The trajectories 

O < t <  2 
I:, I C  31 - - 
3111 \ L - b J  

Trajectories (23)  become, in polar 

= ut 

= Tt 

in Figure 11. x(ti), y(ti), C and S t . , a  ti 1 

(23) a r e  shown as the solid trajectories 

~ a r e  shown for various values d f  the 

parameter t.. Let us now determine if the trajectories x(t) and y(t) a s  given - 1 

in (23) a r e  optimal. From Figure I1 it i s  c lear  that S C and hence 2, a 
L. 

that there is no admissible target control which results in a pursuit time greater 

than 2. 

the target follows the trajectory y(t) given in (23) the pursuit time T = 2 will 

not be attained since there a r e  values to t.  smaller than 2 for which y(t.) 

b e l o q  s to Zi¶ e.g* ti = 1. The pursuer can intercept the target the f i rs t  

time ti for which y(t .)  belongs text , which i s  the f i rs t  t .  > 0 for which 
i 

d(y(ti), It.), the distance from y(ti) to C , i s  zero. The sets 

a r e  circular and centered about the origin, hence 

However, in this case it i s  immediately obvious from Figure I1 that i f  

1 1 

1 1 

1 i 

1'2 -2ti 3 =E t 4ticose Z (ti) t ti 
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Here we have used the subscript i on t to indicate that we a r e  speaking of 

points on the trajectory y(t) rather than the trajectory itself. Since we a r e  
interested in values of ti in the interval 0 < t. < 2 for which d(y(t.),'Z;-' ) = 0 

we a r e  essentially interested in the real  roots of t i t  
- 1 -  

3t2 - 4tcos  T r t  - 4 = 0 (26)  

in the interval 0 

t = 0. 76, t2 = 1.76, and t3 = 2. 1 
trajectory y(t) a t  any time in the interval t < t 5 t2, o r  a t  time t 

sequently the pursuit time is t 

control, and hence remain a t  y = col(2, 0), the resulting pursuit time would 

be T = 1. 

L A U ~  L C I . ~ ~  t~ 2 c ~ f i t r ~ l  ttat is h r  worse t h a n  doing nothing. 

have chosen a model for  which the existence assumption would lead the target 

to a choice of control resulting in  his interception in the least  possible time 

of a l l  choices. 

where z (t) is determined in polar form by 

t 5 2. Equation (26)  has three rea l  roots in this interval, 

The pursuer can intercept the target on the 

1- 3 = 2, con- 

Note that i f  the target were to apply zero 1' 

The target ' s  assumption that an  optimal control exists leads in 
&L:- ..-,I_ In fact we could 

Consider now the admissible target trajectories y (t) = a t  z ( t )  
9 + 

+ 
r,(t) = t, ez(t) = at + C+ ( 2 7 )  

We can investigate the t imes t for which y(ti) belongs to 

ez(t) = at t + for a t  in the cosine te rm of Eq. (26). 

the interval 0 1. t 5 2 a r e  plotted a s  a function of u in Figure ID. 
line in Figure 111 corresponds to the pursuit time for the trajectory y (t).  

pursuit time wil l  be denoted by T 

in a pursuit time T 

t3(+) i s  a monotonic decreasing function of 9. 
improved control is obtained by reducing +, however, for  9 5 4,. T 

tl( +) << t,(+). 

by substituting 

The real  roots of (26) in 

The heavy 

t i  i 

This 

(t) results 
4 

Observe that the trajectory y 9' T r l  2 
= t3(Tr12) F 1. 74. In the interval shown in Figure 111 ( a m  

Thus a s  long a s  T+ = t3(+), an  
= + 

Thus there does not exist an optimal trajectory of the form 

+ 2~ < T+o + Q 
T+O 

y (t)  since for c > 0, + but T 
QI.0 

The trajectory y+.(t) i s  represented by the dashed line in Figure 11. I t  can 

be shown that there i s  no admissible control which results in a pursuit time 

o r  less ,  and hence that no optimal control exists for the problem under T4 0 

conside ration. 
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CONCLUSIONS 

The target ' s  problem is essentially a s  follows: Find an  admissible con- 

trol v(t) for which the corresponding trajectory y(t) avoids the closed set  

as  long as possible. 

that one should not in general expect an  optimal solution to exist since the 

problem is now one involving trajectory constraints for which the region of 

allowable trajectories is not closed (since it is the complement of the closed 

set xt 1. m e  assumption that an  optimal control pair  exists is equivalent to 

assuming, among other things, that the pursuit time T is the smallest t for  

When the problem is phrased in this manner it is clear 

which S t C  xt and that it is possible to find a trajectory y(t) corresponding to 

an admissible control v(t) for which y( T)E asT fl a E,, and such that y ( t ) n  S, 

is empty, 0s t 5 T. Here  ST denotes the boundary of S and axT denotes T r 

existence of a n  optimal control pair is very restrictive, and 

in general to be no a pr ior i  way of determining if  a n  optimal 

exists. 
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